Constructing complex minds through multiple authors

Mark Humphrys'?
1School of Computer Applications,
Dublin City University,
Glasnevin, Dublin 9, Ireland
www.compapp.dcu.ie/ humphrys

Ciaran O’Leary??
2School of Computing,
Dublin Institute of Technology,
Kevin St, Dublin 8, Ireland
comp.dit.ie/coleary

3The World-Wide-Mind project

w2mind.org

Abstract

The World-Wide-Mind (WWM) was introduced
in [Humphrys, 2001]. For a short introduction
see [Humphrys, 2001a]. Briefly, this is a scheme
for putting animat “minds” online (as WWM
“servers”) so that large complex minds may be
constructed from many remote components. The
aim is to address the scaling up of animat re-
search, or how to construct minds more complex
than could be written by one author (or one re-
search group).

The first part of this paper describes how a num-
ber of existing animat architectures could be im-
plemented as WWM servers. Any unified mind
can easily map to a single WWM server. So most
of the discussion here is on action selection (or
behavior or goal selection), where each module
could be a different WWM server (written by a
different author).

The second part of this paper describes the
first implementation of WWM servers and clients,
and explains in particular how to write a WWM
server. Most animats researchers are program-
mers but not network programmers. Almost all
protocols for remote services (CORBA, SOAP,
etc.) assume the programmer is a networks spe-
cialist. This paper rejects these solutions, and
shows how any animats researcher can put their
animat “mind” or “world” online as a server by
simply converting it into a command-line program
that reads standard input and writes to standard
output.

1 Introduction

1.1 The AI problem

“AI” refers here to all artificial modelling of life, ani-
mals and humans. In the sense in which we use it, clas-

sic symbolic AI, sub-symbolic AI, Animats, Agents and
ALife are all subfields of “AI”.

It is generally agreed that the AI problem is much
harder than researchers used to think (though it is not
clearly understood why). Early optimism has given way
to a sober respect for the magnitude of the problem, and
a number of approaches have evolved:

1. The standard AT approach has been to work on sub-
sections of the postulated mind, such as computer
vision, or language processing. The criticism of this
approach [Brooks, 1986, Brooks, 1991] is that the
whole mind never actually gets built [Nilsson, 1995].

2. The Animats approach [Wilson, 1990] is to start with
simple whole creatures [Dennett, 1978] and work up
gradually to more complex whole creatures.

3. The evolutionary approach is to say that control sys-
tems are too hard to design and must be evolved
[Harvey et al., 1992]. In practice this has usually
taken the animat approach of starting with simple
whole creatures.

It may be time to ask questions about how the ani-
mats and evolutionary approaches scale up. Both seem
to share an implicit assumption that one lab can do it
all. As a result, the complexity of the minds produced
is limited to the complexity that can be grasped by a
single research team (or even a single individual). Per-
haps the Cog project [Brooks, 1997, Brooks et al., 1998]
is beginning to hit the limits of what a single coherent
team can understand.

1.2 Constructing complex minds through mul-
tiple authors

What is the alternative? The alternative is to link the
work of multiple laboratories - to construct minds out
of sub-minds written by many diverse authors. This is
done of course already within research groups, but we
propose a public system, where perhaps hundreds of di-
verse authors may contribute parts to a large, complex
mind. Other researchers may specialise entirely on just

finding different ways of combining other people’s com-
ponents. No one individual need understand the entire
mind.

This is, of course, the problem of building whole minds
out of specialist components that standard AI never
solved, and we suggest why. We argue that only by us-
ing a public, open system on the Internet as the infras-
tructure on which to build the mind can this problem
be solved. We do not suggest the abolition of the ani-
mats approach, but rather modifying it to building sim-
ple whole creatures out of components written by mul-
tiple authors, and scale up to building complex whole
creatures out of components written by multiple authors.

1.3 “Not enough stuff” in Al

AT has a history of people saying that the systems simply
need more of some property and there will be a break-
through:

1. Not enough speed. - “If we just get faster ma-
chines we will have full AI”. This thinking is common
when Al is viewed primarily as a search problem -
and there is obviously a lot of truth in it (see AI’s
recent triumph at chess [McDermott, 1997]). This
thinking has also been revived with the discussion
of hypothetical super-powerful quantum computers
that might be able to solve NP-complete problems in
polynomial time. Some writing on this (e.g. [Berger,
1998]) suggests that if such super-powerful comput-
ers can be made, then AI will be solved.

2. Not enough neurons/memory. “Brain-
building” [de Garis, 1996] will, it is claimed, lead to
breakthroughs once enough neurons are put together.

3. Not enough data. - The CYC project [cyc.com],
and the online projects MindPixel [mindpixel.com]
and Open Mind [openmind.org], take the approach
that what is needed is to build up vast rule sets.

Here we suggest another one:

1. Not enough authors. - Not enough diversity in
the mind.

The criticism of “not enough stuff” arguments is that
theoretical breakthroughs are needed. However, if you
look at the brain, it is true that it has more “stuff” -
i.e. neurons, connections, memories, experience, multi-
ple learning algorithms, multiple specialised structures
- than artificial models. The brain is much bigger and
richer than any machine we have built so far (perhaps
even bigger and richer than all of our machines plus the
Internet). So the “not enough stuff” argument must be
true on one level (while not disagreeing with the idea
that it is also true that we will need theoretical break-
throughs).

The “not enough authors” approach is the one that has
not yet been tried. Many researchers have emphasised
the vast and heterogenous nature of the mind, notably
Minsky [Minsky, 1986, Minsky, 1991]. In the Animats
world it is at least accepted that complex minds will have
“Action Selection” among competing sub-minds. So far,
the case has been made for heterogenous minds, but no
one has shown how to build really heterogenous minds.

2 The World-Wide-Mind (WWM)

The World-Wide-Mind (WWM) was introduced in
[Humphrys, 2001]. For a short introduction see
[Humphrys, 2001a]. Briefly, it is proposed that re-
searchers construct their animat “minds” and “worlds”
as servers on the Internet. Each WWM “server” is a
program residing on a normal Web server. There are
two basic types of server:

1. A World and Body server. This server can be
queried for the current state of the world x as de-
tected by the body, and can be sent actions a for
the body to perform in the world. For example, one
could put Tyrrell’s action-selection world [Tyrrell,
1993] online as a server, and then people could write
minds to drive the agent in it.

2. A Mind server, which is a behavior-producing sys-
tem, capable of suggesting an action a given a partic-
ular input state x. This does not mean it is stimulus-
response. It may remember all previous states. It
may take actions independent of the current state. It
may work by any AI methodology or algorithm and
may contain within itself any degree of complexity.

A user “runs” a Mind server in a World server, using
some dedicated client software. The user is typically
remote from both Mind and World, and starts the client
by giving it the (remote) World URL and Mind URL.
The client then (repeatedly) queries the World for state,
passes this to the Mind to get a suggested action, sends
this to the World for execution, and so on.

2.1 How to construct a Society of Mind

Even in its basic form above, the scheme would al-
low remote re-use of other people’s minds and worlds,
something for which there is no easy scheme at present.
But we may also consider using someone else’s mind as
merely a component in a larger mind. At the top level,
there is always exactly one Mind server running in ex-
actly one World server. But that Mind server may itself
be calling many other Mind servers in order to select its
action. We define the following types of Mind servers:

1. Mindys - a Mind server that calls other Mind servers.

2. Mindas (or Action Selection or AS server) - a
Mindy server that resolves competition among mul-
tiple Mind servers. Each Mind server i suggests an
action a; to execute. The AS server queries them
and somehow produces a winning action ag. To the
outside world, the AS server looks like just another
Mind server, producing action a given state x.

3. Mind; - a Mind server that accepts it may not be the
only mind in the body (and may support additional
queries to cooperate with the Action Selection).

4. Mindpe, - a Mind server that accepts Feudal com-
mands of the form: “Take me to state c¢”, rather than
just commands of the form “What do you want to do
now?”.

5. Mindy, - a Mind server that learns (and may support
additional queries turning on and off learning).

Societies of mind may be incrementally built up using
the servers that are online, for example:

1. 1st party makes World.

2. 2nd party makes Mind for World.

3. 3rd party makes Mindjys which in state x does some-
thing, otherwise does what 2nd party Mind does.

4. 4th party makes different Mind for World.

5. bth party makes Mindys which in state y does what
4th party Mind does otherwise does what 3rd party
Mindpys does. And so on, with people modifying and
cautiously overriding what already works.

2.2 What is the definition of x and a?

Clearly, we cannot define a universal format for state
x or action a that works across all worlds. We have
no choice but to allow each World server define its own
format of what the agent sees [e.g. gridworld state, 3D
world description, neural network input vector, robotic
sensory inputs] and what actions it can execute. Each
Mind server that wants to run in that World will have
to understand the format used.

What may prevent complete chaos, however, is first,
that popular worlds will serve as benchmarks for testing.
“Islands” of compatible worlds and minds may develop
around each popular basic problem. Also, we can define
a client that will work with all World servers and Mind
servers. And finally, it may be the case that Minds can
be written that will run in all worlds, or at least in a lot
of quite different worlds. For example, one could write a
generic Q-learning Mind server [Watkins, 1989]. When
set to run in a new World server, it queries the world
to learn that it has a finite number of states, numbered
state 1 to state n, and a finite number of actions, action
1 to action m, and the World server will occasionally gen-
erate a numeric reward after an action has been taken.

The Q-learning Mind server can then attempt to learn a
policy without knowing anything more about what the
world represents or what the problem is.

2.8 Testing and methodological issues in Al

Once systems are brought online in an open, public way,
we can see that this could address some general method-
ological issues in the animats field (and other AI fields):

1. Lack of re-use - Sharing work has been so diffi-
cult that researchers tend to build their own ani-
mat minds and worlds from scratch, often duplicat-
ing work that has been done elsewhere. There have
been a number of attempts to re-use animat or agent
minds [Sloman and Logan, 1999, Sutton and Santa-
maria] and worlds [Daniels, 1999], but the model of
re-use often requires installation, or even a particular
programming language.

2. Taking results on trust - Often, the only person
who ever does experiments with an animat or agent
is its author. In this field it has become acceptable
not to have direct access to many of the major sys-
tems under discussion. How many action selection
researchers have ever seen Tyrrell’s world running
[Tyrrell, 1993] for example? This lack of direct ex-
perience is even greater when it comes to other re-
searchers’ robotic projects. We accept that we will
never experiment with many of the systems under
discussion ourselves, but only read papers on them.

3. Lack of re-testing - Lack of re-use has serious con-
sequences for scientific progress in the sense of being
able to repeat experiments and being able to prove
that one system is better than another. [Bryson,
2000] points out that, essentially, no one uses each
other’s agent architectures, because they are not con-
vinced by each other’s tests. [Guillot and Meyer,
2000] make the same point about the animats field
- that the number of architectures has grown faster
than the number of comparisons. Having systems
publicly available for indefinite re-testing by 3rd par-
ties is, we argue, the only solution to this.

3 How to express animat architectures
as networks of WWM servers

We now discuss how a number of existing animat ar-
chitectures might be expressed as networks of WWM
servers using simple remote queries. An attempt to de-
fine the full set of WWM server queries is in [Humphrys,
2001].

3.1 A single (sub-symbolic or symbolic) Mind
server

A hand-coded mind program can clearly be implemented
as a single Mind server, receiving x and returning a.

There are a vast number of models of animat or agent
mind, whether hand-coded, learnt or evolved, symbolic
or non-symbolic, that could be implemented as a single
WWM server without raising any particular issues.

3.2 Multiple sub-symbolic Mind servers

The difficulty arises when we consider competition be-
tween multiple Minds. Any unified mind (such as a single
learner trained to solve a task) can easily map to a single
WWM server. So most of the discussion here is on ac-
tion selection (or behavior or goal selection) among com-
peting modules, where each module could be a different
remote WWM server (written by a different remote au-
thor). Many of the Action Selection methods discussed
below are surveyed in detail in [Humphrys, 1997], or, for
a brief introduction, see [Humphrys, 1996].

3.3 This 1s easier to do at sub-symbolic level
than at symbolic level

We concentrate initially on defining sub-symbolic level
queries, where, for example, competition is resolved us-
ing numeric weights rather than by symbolic-level nego-
tiation. This avoids the problem of symbolic knowledge
representation schemes [Ginsberg, 1991] and agent com-
munication languages [Martin et al., 2000] that has been
the graveyard of so many previous attempts. Obviously
the symbolic level will have to be addressed at some
point, but we show below how much can be done before
we get to that level, and how the WWM is currently
more suitable for the sub-symbolic minds popular in the
Animats, ALife and Neural Networks fields.

3.4 The Subsumption Architecture

A Subsumption Architecture model [Brooks, 1986,
Brooks, 1991] could be implemented as a hierarchy of
Mindys servers, each one building on the ones below it.
Each one sends the current state x to the server below
it, and then either uses their output or overrides it. As
in Brooks’ model, a set of lower layers will still work if
the higher layers are removed. On the WWM, there may
be many choices for (remote, 3rd party) higher layers to
add to a given collection of lower layers.

3.5 Reinforcement Learning

An ordinary Reinforcement Learning (RL) agent, which
receives rewards and punishments as it acts [Kaelbling et
al., 1996], can clearly be implemented as a single Mind
server. For example a Q-learning agent [Watkins, 1989]
builds up Q-values (“Quality”-values) of how good each
action is in each state: Q(x,a). When learning, it can
calculate a reward based on x, a and the new state y. So,
so long as the client informs this Mind server what state
y resulted from the previous action a, it can calculate

rewards, and learn.

3.6 Hierarchical)-Learning

Hierarchical Q-Learning [Lin, 1993] is a way of driving
multiple Q-learners with a master Q-learner. It can be
implemented on the WWM as follows. The client talks
to a single Mindag server, sending it x and receiving a.
The Mindags server talks to a number of Mind servers.
The Mindag server maintains a table of values Q(x,i)
where i is which Mind server to pick in state x. Initially
its choices are random, but by its own reward function,
the Mindg server fills in values for Q (x,1). Having cho-
sen i, it passes on the action suggested by Mind server
i to the client. To save on the number of server queries
(which is a more serious issue on the WWM than in
a self-contained system), the Mindas server does not
query any of the Mind servers until it has picked an ac-
tion i, and then it only queries a single Mind server i.
There are a number of interesting possibilities:

1. The Mindsg server need not know its list of Mind
servers in advance. It can be passed this list by the
client at startup.

2. The subsidiary Mind servers need not be Q-learners.
They could be any type of Mind server (including
symbolic Mind servers), and the Mindas server sim-
ply learns which one to let through.

3. A further possibility [thanks to Dave O’Connor] is
that the Hierarchical Q-Learner could build Q(x,1i)
values for every Mind server on the Net. It acts as a
spider, finding new, random Mind servers, and trying
their actions out in pursuit of its goal. The result of
all of this learning will be the construction of a huge
map telling it which server i to pick in each state x.
It may use hundreds of servers to implement its goal.

Because the number of queries made is a more impor-
tant issue on a network system than on a self-contained
system, we distinguish different types of Mind g server:

1. AS; server - makes a single query of each Mind
server before making its decision.

2. AS, server - does not even query all Mind servers
once. It just makes one query of one Mind server.

3. AS,, server - makes multiple queries of each Mind
server before making its decision.

Hierarchical Q-Learning is an AS, server.

3.7 W-learning

We consider a number of schemes where Mind servers
promote their actions with a weight W, or “W-value”
[Humphrys, 1997]. Ideally the W-value will depend on
the state x and will be higher or lower depending on

how much the Mind server “cares” about winning the
competition for this state. A static measure of the W-
value is one in which the Mind server promotes its action
with a value of W independent of the competition (e.g.
W=Q). Any such method can clearly be implemented
as a Mind; server. A dynamic measure of W is one in
which the value of W changes depending on whether the
Mind server was obeyed, and on what happened if it was
not obeyed. Clearly this is an AS, server that queries
once, lets through the highest W, and then reports back
afterwards to each Mind server whether or not it was
obeyed. The server may then modify its W-value next
time round in this state.

W-learning [Humphrys, 1996] is a form of dynamic
W where W is modified based on (i) whether we were
obeyed or not, and (ii) what the new state y is as a result.
This can clearly be implemented as an AS; server. In the
pure form of W-learning the Minds do not even share the
same suite of actions, and so, for example, cannot simply
get together and negotiate to find the optimum action.
The inspiration was simply to see if competition could
be resolved between Minds that had as little in common
as possible. That work was unable to give convincing
examples where this might arise. Now with the WWM,
we see this is the kind of model we need when parts of
the mind have great difficulty understanding each other
(e.g. are written by different remote authors).

3.8 Global Action Selection decisions

If Minds do share the same suite of actions, then we
can make various global decisions. Say we have n Mind
servers. Mind server i’s preferred action is a;. It can
quantify “how good” action a is in state x by returning:
Qi(z,a), and can quantify “how bad” action a is in state
x by returning: Q;(z,a;) — Q;(z,a). Then we have 4
basic approaches [Humphrys, 1997]:

1. Maximize the Best Happiness:
max max Q;(z, a)
a 2

which is equal to static W=Q above, and can be im-
plemented as an AS; server, with just one query to
each Mind server to get its best action and Q-value.

2. Minimize the Worst Unhappiness:

main mzax(Qi(:c, a;) — Qi(z,a))

which is an AS,, server, requiring multiple queries of
each Mind server.

3. Minimize Collective Unhappiness:

main lZ(Qz(maaz) - Qz(maa))]

i
which is an AS,, server.

4. Maximize Collective Happiness:

max [Z Qi(z, a)]

which is an AS,, server.

A number of authors [Aylett, 1995, Tyrrell, 1993,
Whitehead et al., 1993, Karlsson, 1997, Ono et al., 1996]
implement, using a variety of notations, one of the 4
basic AS methods defined above.

3.9 Nested Mind servers

Digney [Digney, 1996, Digney, 1998] defines Nested Q-
learning, where each Mind in a collection is able to call
on any of the others. Each Mind server has its own set
of actions @Q;(z,a) and a set of actions Q;(z, k) where
action k means “do whatever server k wants to do” (as
in Hierarchical Q-learning). In a WWM implementa-
tion, each Nested server has a list of Mind URLs, either
hard-coded or passed to it at startup. So the Nested
server looks like a Mindas server co-ordinating many
Mind servers to make its decision. But of course it is not
making the final decision. It is merely suggesting an ac-
tion to the master Minds server that coordinates the
competition between the Nested servers themselves.

Some of the Nested servers might actually be out-
side the Action Selection competition, and simply wait
to be called by a server that is in the competition.
[Humphrys, 1997] calls these “passive” servers. We have
the same with hand-coded Mindy; servers, where some
Mind servers may have to wait to be called by others. A
server may be “passive” in one Society and at the same
time “active” (i.e. the server is in the Action Selection
loop) in a different Society.

3.10

Watkins [Watkins, 1989] defines a Feudal (or “slave”) Q-
learner as one that accepts commands of the form “Take
me to state c¢”. In Watkins’ system, the command is
part of the current state. Using the notation (x,c),a
-> (y,c) the slave will receive rewards for transitions
of the form: (*,c),a -> (c,c) So the master server
drives the slave server by explicitly altering the state for
it. We do not have to change our definition of the server.
It is just that the server driving it is constructing the
state x rather than simply passing it on from above.

Feudal Mind servers

3.11 The sub-symbolic Society of Mind

The Nested and Feudal models are combined in
[Humphrys, 1997, Fig. 18.4] showing the general form
of a Society of Mind based on Reinforcement Learning.
Indeed, the whole model of a complex, overlapping, com-
peting, duplicated, sub-symbolic Society of Mind here is
based on the generalised form of a Society of Mind based
on Reinforcement Learning.

3.12 Multiple symbolic Mind servers

So far we have only defined a protocol for conflict resolu-
tion using numeric weights. Higher-bandwidth commu-
nication leads us into the field of Agents and its problems
with defining agent communication languages (formerly
symbolic AI knowledge-sharing protocols) that we dis-
cussed above. We imagine that numeric weights will be
more easily generated by sub-symbolic Minds, and are
harder to generate in symbolic Minds. This is because
symbolic Minds often know what they want to do but not
“how much” they want to do it. Sub-symbolic Minds,
who prefer certain actions precisely because numbers for
that action have risen higher than numbers for other ac-
tions, may be able to say precisely “how much” they
want to do something, and quantify how bad alternative
actions would be.

It may be that in the symbolic domain we will make
a lot more use of hand-coded Mindys servers instead of
having Minds generating weights to resolve competition.
The drawback, of course, is that the Mind,; server needs
a lot of intelligence. It needs to understand the goals
of all the Mind servers. This relates to the “homuncu-
lus” problem, or the need for an intelligent headquar-
ters. Another possibility is the subsidiary Mind servers
can be symbolic, while the master Mind 45 server is sub-
symbolic - e.g. a Hierarchical Q-learner.

3.13 How about robots?

Any scheme of remote re-use is clearly more adapted to
virtual agents than real (embodied) ones. But, as dis-
cussed above, it is interesting to consider the current
lack of direct access to other researchers’ robotic experi-
ments. If software animat experiments are hard to repli-
cate, robotic ones are doubly so.

“Telerobotics” is the ability to control a robot re-
motely. Telerobotic systems have in fact been used in
animats [Wilson and Neal, 2000], though not on the net-
work. Outside of the animats field there are in fact a
number of “Internet telerobotics” robots that can be con-
trolled remotely over the Internet. [Taylor and Dalton,
1997] discuss some of the issues:

1. We may want a scheme where only one client can
control the robot at a time. Whereas with a software-
only world one can always allow multiple clients (e.g.

by creating a new instance of the world for each).

2. The robot owner may want to restrict who is able
to run a mind on his machine, since some control
programs may cause damage.

3. A virtual world server requires little or no mainte-
nance. The author can put the virtual world up on
the server and then forget about it. A robotic world
server, however, demands much more of a commit-
ment. As a result most of the Internet robots so far
have run for a limited time only.

For example, [Stein, 1998] allows remote control of the
robot until the client gives it up, or until a timeout has
passed. [Paulos and Canny, 1996] operate in a special
type of problem space where each action represents the
completion of an entire goal, and so actions of differ-
ent clients can be interleaved. In the robotic tele-garden
[Goldberg et al., 1996] users could submit discrete re-
quests at any time, which were executed later by the
robot according to its own scheduling algorithm. The
robotic Ouija board [Goldberg et al., 2000] is a special
type of problem where the actions of multiple clients
can be aggregated. It seems that all of these schemes
could be implemented under the model discussed here.
The focus so far in Internet telerobotics has been on re-
mote human-driven control rather than remote program-
driven control, but this may change.

3.14 How about speed? (robotic worlds and

real-time virtual worlds)

Obviously there are inherent performance problems in
any system of remote re-use. These problems may not be
so acute in virtual worlds, where the world can freeze and
wait for the agent to make a decision. We can speed up
and slow down time in a virtual world to allow for delays
caused by the network, without changing the nature of
the problem.

This is not, however, an option in real-time virtual
worlds, such as ones where other users or agents are
changing the environment. Here the system may share
some of the features of real-time multi-player online
games (see survey in [Smed et al., 2001]). A large,
nested Society of Mind may resemble a peer-to-peer
game with low-bandwidth communication, which should
scale well. A possible bottleneck is the top-level Mind
server, depending how it is designed. [Abdelkhalek et
al., 2001] considers performance issues with centralised
game servers.

A top-level Mind server is unavoidable because the
diversity of suggested actions must be reduced at some
point, and a decision made. This point is the potential
bottleneck. In many of the Action Selection schemes
above, the top-level mind is reduced more or less to a
router rather than a processor in its own right, in an
effort to decentralise the intelligence. We now see that

such an approach may also be useful in distributing the
network load.

In the real physical world, a robotic animat also needs
to make decisions quickly. It may be that a system such
as this will be used for prototyping - experimenting with
different Mind server combinations out of the choices
online. Once a combination is chosen, one attempts to
get a local installation of all the Mind servers involved.
Why we are trying to avoid local installation is consid-
ered below. If we reject local installation, we cannot
avoid network delays.

3.15 What if the remote server is down?

One problem with scaling up AI is that researchers do
not want to be dependent on other people’s work. What
if the remote server is down? Or removed permanently?

Part of the problem is, we argue, models of mind in
which the loss of a single server would be a serious is-
sue. Instead of models of mind where hundreds of simi-
lar servers compete to do the same job, researchers have
been assuming the use of parsimonious minds where each
component does a particular task that is not done by
others. A better strategy is to keep adding “unnec-
essary” duplicated minds to your society. The master
Mindags server asks all Mind servers to suggest actions,
and times-out if it does not receive an answer in a short
time. So in a highly-duplicated model, if the action does
not arrive from one Mind server, it will have arrived from
another similar one. In a mind with enough duplication,
the temporary network failure (or even permanent dele-
tion) of servers may never even be noticed. Obviously,
some servers will be essential - like the World server, for
instance. The basic answer for how to cope with essen-
tial servers is that if it is important to us, we will copy
it (if it is free) or buy it or rent it.

[Humphrys, 1997] describes a multiple-minds model of
AT that can survive brain damage by re-organising. The
reader might have wondered what is the point of that.
After all, if the Al is damaged, you just fix it or reinstall
it surely? Here is the point - a model of AI that can
survive broken links.

3.16 How about multi-agent systems?

In distributed intelligence, there are two major camps:

1. Multiple minds in one body, competing for expres-
sion (the fields of action selection, motivation, goal
conflict, emotion, Society of Mind). We will refer to
this as the “AS” camp.

2. Multiple bodies, which can act independently (multi-
agent systems, collective behaviour). We will refer to
this as the “MAS” camp.

The field of Animats focuses on both AS and MAS of-
fline. The field of Internet Agents focuses on MAS on-

line. The WWM focuses on AS online - on addressing
the issue of how to construct really complex agent minds,
and implementing action selection across servers. This,
we argue, is the neglected area.

There is perhaps one other neglected area, which is
sub-symbolic MAS online. Most work on MAS online
is at the symbolic level (see agent communication lan-
guages, as discussed previously). One interesting issue
is whether the Animats work on MAS, which involves
what might be called sub-symbolic communication or sig-
nalling, can be brought online. Ongoing research by Wal-
she [Walshe, 2001] will attempt to interface sub-symbolic
AS and MAS online.

4 Implementation of the WWM

We now describe the first implementation of the WWM,
and the decisions made in reaching that implementation.

4.1 Rejecting local installation

First note that we reject the solution that would have
been imagined for most of the history of AI - local in-
stallation. Given the huge diversity of, and incompatibil-
ity of, operating systems, platforms, files, libraries, ver-
sions, environments, programming methodologies and
programming languages in use in AI (a diversity per-
haps actually greater in AI than in any other field of
computing), we view it as highly unlikely that local in-
stallation could lead to widespread re-use. We clearly
reject the idea of asking all animats researchers to use a
certain programming language (e.g. Java) or platform.

How can one avoid these compatibility problems and
allow researchers use whatever platform they want? By
server-side programs rather than client-side programs.
The Web demonstrates this highly successful model of re-
use - leaving the program on the remote Web server, and
running it from there. One strange aspect of adopting
this model for the WWM is that the mind may consist
of components which are physically at different remote
sites, and which stay there, and just communicate with
each other remotely. Hence the mind is literally decen-
tralised across the world - something which has never
existed in nature. Hence the name, the “World-Wide-
Mind”.

4.2 Rejecting models designed for network
programmers

Given that we propose a remote solution, we might look
at the emerging web services architectures for program-
to-program transactions online. These are called “web
services” because they run over the existing HTTP net-
work (rather than demand a new network be set up).
The emerging standard is to send messages to remote
objects or programs using the SOAP message system

[w3.org/TR/SOAP], which runs over normal HTTP.
SOAP messages are based on XML [w3.org/XML], a
standard meta language used to describe data in tagged
plaintext (i.e. it looks similar to HTML).

While we agree with this general scheme (run on
HTTP, the data format should be tagged and exten-
sible), we reject using the full complexity of the web
services protocols. Why? Because of the unique nature
of our audience. Most animats researchers are program-
mers, but not network programmers. These protocols -
and indeed almost all protocols in computer networks,
web services, distributed objects or Internet Agents -
assume the programmer is a networks specialist (or is
willing to become one). SOAP messages are complex,
and you require an API to parse them. Doing it yourself
is difficult.

4.8 Rejecting unforgiving data formats

We also reject strict XML. XML has moved away from
the forgiving nature of HTML. In XML, opening and
closing tags must both be present, the tags in a document
must form a tree, and so on. Any failure results in the
document being rejected by the parser. XML parsers are
also extremely complex to use.

We still agree with the idea of tagged plain text for our
data. Plain text is important so humans can read the
data, and programmers can parse it themselves. With
tagged plain text (each piece of data is delimited by tags,
whitespace is ignored) it is much easier to create a toler-
ant parser than with untagged plain text (where, say,
precise column number or line number defines which
piece of data is which). Tagging allows extensible sys-
tems - we can ignore new tags that we don’t recognise.

4.4 Lightweight Web Services

We describe our approach as Lightweight Web Services
[O’Leary, 2002a]. These are web services that anyone
can create without having to learn a whole family of
new protocols. It should be (almost) as easy to create a
Lightweight Web Service as it is to create a Web Page.
Under the system we have now developed, any animats
researcher can put their animat “mind” or “world” on-
line as a WWM server by converting it into a command-
line program that reads standard input and writes to
standard output. The program can be written in any
language and runs as a “CGI script”. The input and
output is in a stripped-down, forgiving, XML-like lan-
guage called AIML. We now explain this.

45 CGI

All Web servers support a system of server-side programs
called CGI. CGI is not a difficult technology - indeed,
there is almost nothing to it except placing a command-

line program in the CGI directory of your Web server.
Any programming language may be used. Programs read
plaintext input (text, HTML, XML, or any XML-like
format) on standard input and write plain text output
to standard output. All browsers (and other clients) can
run remote CGI programs.

CGI is the command-line of the Internet. Network
enthusiasts often neglect CGI and describe much more
complex technologies (JavaScript, VBScript, Java ap-
plets, Java Servlets, ASP, JSP, etc.) we suspect precisely
because CGI is so simple and was worked out long ago
(1993, before the Web took off). But CGI is not ob-
solete. CGI is still a far simpler technology than these
or any other technology for programs online either at
client-side or server-side.

4.6 AIML

The plaintext input to and output from the WWM
servers is in a simple, loosely-defined XML-like language
we call AT Markup Language (AIML). Strictly speaking,
AIML is not XML since we reject strict XML formatting,.
AIML is closer to HTML in that we try never to reject
messages because of their being badly formed. A best
effort is always attempted. We will have to be tolerant
of loosely-defined servers on the WWM because often
there will be no alternative to the AI author. If Bloggs
does not put the Bloggs learning algorithm online, it will
often be the case that no one else will. So we can’t just
refuse to use his server if it generates sloppy AIML.

This tolerance does not mean we cannot issue recom-
mendations. The situation will be like the Web. The
portal site w3.org defines the official HTML spec. (e.g.
“tables should end with an end-table tag”). But the
browser can’t just choke on bad HTML, not if there is
scope to make a guess and display it (e.g. if end of
file comes with no end-table tag, then insert end-table
tag). The browser must tolerate bad HTML, or users
will switch to browsers that do. And the pool of authors
would never have grown so big if authors had to write
strict HTML. It is often forgotten that the Web does not
run on strict HTML, and never could have.

Similarly, the portal site w2mind.org will define an
official AIML spec. (e.g. “WWDM query responses should
end with an end-response tag”). But no matter how
we define it, there will always be room for the client to
make some guesses with bad AIML. Clients must try to
tolerate AIML “close to” the spec. - though obviously
there can be no guarantees once one deviates from the
spec.

4.7 How to write a WWM server

Now we bring this all together. To write a Mind server
that can suggest an action given that the world is in
some state x, one writes a command-line program that

can parse something like this on standard input:

<request type="GetAction" runid="RUNID">
<data name="x"> x </data>
</request>

where the format of x is decided by the World server.
Clearly, this plaintext input can easily be parsed by any
programmer using simple string searching mechanisms in
any language (the first author’s parser is just 5 lines of
UNIX Shell, and is tolerant of many different variations
in the input AIML). The Mind server then outputs to
standard output something like:

<response type="GetAction" runid="RUNID">
<data name="a"> a </data>
</response>

where the format of a is decided by the World server.
We say “something like” because AIML is still in a state
of revision. An agreed standard will be released in mid-
2002. For the current draft, AIML v1.1, see [O’Leary,
2002].

That is all one needs - to agree on the format of AIML
- and even full agreement is not necessary if one writes
a tolerant parser. The program can be written in any
language. Input and output can be debugged using an
ordinary web browser (though for repeated queries one
would want to use one of our dedicated clients).

4.8 Emisting work

To date, we have put online:

1. World servers representing simple toroidal “grid
worlds” with “food” and mobile “predators”, writ-
ten in C++ and Java by multiple authors.

2. Mind servers to drive the animat in these worlds,
written in C++ and Java by multiple authors.

The servers are hosted on separate remote Web
(HTTP) servers. Both GUI and command-line clients
have been written for Windows and UNIX. Using the
clients, Mind A (Java) was able to explore World B
(C++), and Mind B (C++) was able to explore World
A (Java).

4.9 Further issues

There are many further implementation issues, such as:

1. How to save the state of the world (or mind, if it is
learning) in between requests.

2. How to write CGI programs that are persistent in
memory between requests.

3. How to handle multiple users.

4. How to display graphically what is happening in the
world (or inside the mind) and where to display this.

5. How does a server call another server.

We deal with all of these issues in [Humphrys, 2001,
O’Leary, 2002a]. But it remains that a basic WWM
server can still be got running with just a program that
parses plaintext and outputs plaintext as above.

5 Future work

From the WWM viewpoint the next immediate thing
to do is finalise a standard for AIML and then pub-
licly release this standard, plus servers and clients that
use it, and make these available from the portal site
w2mind.org. Then other researchers can start building
their own servers.

From the animats viewpoint the next things to do are:
(a) Put existing well-known minds and worlds online as
servers (we already have Tyrrell’s world running [Tyrrell,
1993] but not yet as a server) and: (b) Construct network
action selection mechanisms for Action Selection across
multiple remote minds by different authors.

6 Conclusion

This paper has argued for the need to decentralise the
work in AT so that researchers may specialise on differ-
ent parts, and a mind may be constructed from these
multiple specialist parts. Such a future (of specialists
coming together) has been imagined (at least implicitly)
in many branches of AL, but no practical scheme for im-
plementing it has yet emerged. We believe that now,
with server-side programming ubiquitous on the Inter-
net, such a scheme is finally possible.

We have a new vision of a mind: no single author
could write a high-level artificial mind, but perhaps the
entire scientific community could. Each piece will be
understood by someone, but the whole may be under-
stood by no-one. Perhaps we need a new respect for the
magnitude of the Al problem - that building a high-level
artificial mind may be on the same scale as constructing
something like a national economy, or the city of Lon-
don. No single individual or company built London or
New York. But humanity as a whole did.

Acknowledgements

The software for this system (servers, clients and server
support software) and the design of AIML is the joint
work of the authors of this paper and Dave O’Connor
and Ray Walshe. We are grateful to two anonymous
referees for their comments.

References

Abdelkhalek, A.; Bilas, A. and Moshovos, A. (2001), Behav-
ior and Performance of Interactive Multiplayer Game
Servers, Proc. Int. IEEE Symposium on the Perfor-
mance Analysis of Systems and Software.

Aylett, R. (1995), Multi-Agent Planning: Modelling Execu-
tion Agents, 14th UK Planning and Scheduling SIG.
Berger, HW. (1998), Is The NP Problem
Solved? (Quantum and DNA Computers),
www.pcs.cnu.edu/ "hberger/Quantum_Computing.html

Brooks, R.A. (1986), A robust layered control system for a
mobile robot, IEEE Journal of Robotics and Automation
2:14-23.

Brooks, R.A. (1991), Intelligence without Representation,
Artificial Intelligence 47:139-160.

Brooks, R.A. (1997), From Earwigs to Humans, Robotics
and Autonomous Systemns, Vol. 20, pp. 291-304.

Brooks, R.A. et al. (1998), The Cog Project, Computation
for Metaphors, Analogy and Agents, Springer-Verlag.

Bryson, J. (2000), Cross-Paradigm Analysis of Autonomous
Agent Architecture, JETAT 12(2):165-89.

Daniels, M. (1999), Integrating Simulation Technologies
With Swarm, Workshop on Agent Simulation, Univ.
Chicago, Oct 1999.

de Garis, H. (1996), CAM-BRAIN: The Evolutionary En-
gineering of a Billion Neuron Artificial Brain, Towards
Evolvable Hardware, Springer.

Dennett, D.C. (1978), Why not the whole iguana?, Behav-
toral and Brain Sciences 1:103-104.

Digney, B.L. (1996), Emergent Hierarchical Control Struc-
tures, SAB-96.

Digney, B.L. (1998), Learning Hierarchical Control Struc-
tures for Multiple Tasks and Changing Environments,
SAB-98.

Ginsberg, M.L. (1991), Knowledge Interchange Format:
The KIF of Death, AI Magazine, Vol.5, No.63, 1991.
Goldberg, K. et al. (1996), A Tele-Robotic Garden on the
World Wide Web, SPIE Robotics and Machine Percep-

tion Newsletter, 5(1), March 1996.

Goldberg, K. et al. (2000), Collaborative Teleoperation via
the Internet, IEEFE Int. Conf. on Robotics and Automa-
tion (ICRA-00).

Guillot, A. and Meyer, J.-A. (2000), From SAB94 to
SAB2000: What’s New, Animat?, SAB-00.

Harvey, I.; Husbands, P. and Cliff, D. (1992), Issues in Evo-
lutionary Robotics, SAB-92.

Humphrys, M. (1996), Action Selection methods using Re-
inforcement Learning, SAB-96.

Humphrys, M. (1997), Action Selection methods wus-
ing Reinforcement Learning, PhD thesis, Uni-
versity of Cambridge, @ Computer Laboratory.
WWW.compapp .dcu.ie/ humphrys/PhD

Humphrys, M. (2001), The World- Wide-Mind: Draft Pro-
posal, Dublin City University, School of Computer Ap-
plications, Technical Report CA-0301, February 2001.
Wwww . compapp -dcu.ie/ humphrys/WwM

Humphrys, M. (2001a), Distributing a Mind on the Inter-
net: The World-Wide-Mind, ECAL-01, Springer-Verlag
LNCS/LNAI 2159, September 2001.

Kaelbling, L.P.; Littman, M.L. and Moore, A.W. (1996),
Reinforcement Learning: A Survey, JAIR 4:237-285.
Karlsson, J. (1997), Learning to Solve Multiple Goals, PhD
thesis, University of Rochester, Department of Com-

puter Science.

Lin, L-J (1993), Scaling up Reinforcement Learning for
robot control, 10th Int. Conf. on Machine Learning.
Martin, F.J.; Plaza, E. and Rodriguez-Aguilar, J.A. (2000),
An Infrastructure for Agent-Based Systems: an In-
teragent Approach, Int. Journal of Intelligent Systems

15(3):217-240.

McDermott, D. (1997), “How Intelligent is Deep Blue?”,
New York Times, May 14, 1997.

Minsky, M. (1986), The Society of Mind.

Minsky, M. (1991), Society of Mind: a response to four
reviews, Artificial Intelligence 48:371-96.

Nilsson, N.J. (1995), Eye on the Prize, AI Magazine 16(2):9-
17, Summer 1995.

O’Leary, C. (2002), AIML wi.1 - Ar
tificial Intelligence Markup Language,
comp.dit.ie/coleary/research/phd/wwm/

O’Leary, C. (2002a), Lightweight Web Services for AI Re-
searchers, comp.dit.ie/coleary/research/phd/wwm/

Ono, N.; Fukumoto, K. and Ikeda, O. (1996), Collective
Behavior by Modular Reinforcement-Learning Animats,
SAB-96.

Paulos, E. and Canny, J. (1996), Delivering Real Reality to
the World Wide Web via Telerobotics, IEEE Int. Conf.
on Robotics and Automation (ICRA-96).

Sloman, A. and Logan, B. (1999), Building cognitively rich
agents using the SIM_AGENT toolkit, Communications
of the ACM, 43(2):71-7, March 1999.

Smed, J.; Kaukoranta, T. and Hakonen, H. (2001), Aspects
of Networking in Multiplayer Computer Games, Proc.
Int. Conf. on Application and Development of Computer
Games in the 21st Century.

Stein, M.R.. (1998), Painting on the World Wide Web, IEEE
/ RSJ Int. Conf. on Intelligent Robotic Systems.

Sutton, R.S. and Santamaria, J.C., A Standard In-
terface for Reinforcement Learning Software, www-
anw.cs.umass.edu/ rich/RLinterface/RLinterface.html

Taylor, K. and Dalton, B. (1997), Issues in Internet Teler-
obotics, Int. Conf. on Field and Service Robotics.

Tyrrell, T. (1993), Computational Mechanisms for Action
Selection, PhD thesis, University of Edinburgh.

Walshe, R. (2001), The Origin of the Speeches: language
evolution through collaborative reinforcement learning,
Proc. 8rd Int. Workshop on Intelligent Virtual Agents
(IVA-2001).

Watkins, C.J.C.H. (1989), Learning from delayed rewards,
PhD thesis, University of Cambridge.

Whitehead, S.; Karlsson, J. and Tenenberg, J. (1993),
Learning Multiple Goal Behavior via Task Decompo-
sition and Dynamic Policy Merging, Robot Learning,
Kluwer.

Wilson, M. and Neal, M. (2000), Telerobotic Sheepdogs:
How useful is autonomous behavior?, SAB-00.

Wilson, S.W. (1990), The animat path to AI, SAB-90.

